Limit Continuity and Differentiability 2 Question 5

5. For each xR, let [x] be the greatest integer less than or equal to x. Then, limx0x([x]+|x|)sin[x]|x| is equal to

(a) 0

(b) sin1

(c) sin1

(d) 1

(2019 Main, 9 Jan II)

Show Answer

Answer:

Correct Answer: 5. (a)

Solution:

  1. We have,

Yn=1n[(n+1)(n+2)(n+n)]1/n and limnYn=LL=limn1n[(n+1)(n+2)(n+3)(n+n)]1/nL=limn1+1n1+2n1+3n1+nn1nlogL=limn1nlog1+1n+log1+2nlog1+nnlogL=limn1nr=1nlog1+rnlogL=011×logI(1+x)dxlogL=(xlog(1+x))0101ddx(log(1+x)dxdx

logL=[xlog(1+x)]0101x1+xdx

[by using integration by parts]

logL=log201x+1x+11x+1dx

logL=log2[x]01+[log(x+l)]01

logL=log21+log20

logL=log4loge=log4eL=4e

[L]=4e=1



NCERT Chapter Video Solution

Dual Pane