Limit Continuity and Differentiability 2 Question 1

1. Let f:RR be a differentiable function satisfying f(3)+f(2)=0. Then limx01+f(3+x)f(3)1+f(2x)f(2)1x is equal

to

(a) e

(b) e1

(c) e2

(d) 1

(2019 Main, 8 April II)

Show Answer

Answer:

Correct Answer: 1. (d)

Solution:

  1. Given α and β are roots of quadratic equation 375x225x2=0

α+β=25375=115

and αβ=2375

Now, limnr=1nαr+limnr=1nβr

=(α+α2+α3++ upto infinite terms )+

(β+β2+β3+ +upto infinite terms)

=α1α+β1βS=a1r for GP

=α(1β)+β(1α)(1α)(1β)=ααβ+βαβ1αβ+αβ

=(α+β)2αβ1(α+β)+αβ

On substituting the value α+β=115 and αβ=2375 from

Eqs. (i) and (ii) respectively,

we get

=115+437511152375=29375252=29348=112

sec2x



NCERT Chapter Video Solution

Dual Pane