Limit Continuity and Differentiability 1 Question 1

2. If limx1x2ax+bx1=5, then a+b is equal to

(a) -4

(b) 1

(c) -7

(d) 5

(2019 Main, 10 April II)

Show Answer

Answer:

Correct Answer: 2. (c)

Solution:

  1. Let L=limx1π2sin1x1x, then

L=limx1π2sin1x1x×π+2sin1xπ+2sin1x

[on rationalization]

=limx1π2sin1x1x×1π+2sin1x

=limx1π2π2cos1x1x×1π+2sin1x

sin1x+cos1x=π2

=limx12cos1x1x×limx11π+2sin1x

=12πlimx12cos1x1xlimx1sin1x=π2

Put x=cosθ, then as x1, therefore θ0+

Now, L=12πlimθ0+2θ1cosθ

=12πlimθ0+2θ2sinθ21cosθ=2sin2θ2

=12π2limθ0+2θ2sinθ2

=12π22=2πlimx0+θsinθ=1



NCERT Chapter Video Solution

Dual Pane