Inverse Circular Functions 3 Question 2

2. If cos1xcos1y2=α, where 1x1,2y2, xy2, then for all x,y,4x24xycosα+y2 is equal to

(a) 2sin2α

(b) 4cos2α+2x2y2

(c) 4sin2α

(d) 4sin2α2x2y2

(2019 Main, 10 April II)

Show Answer

Answer:

Correct Answer: 2. (c)

Solution:

  1. Given equation is

cos1xcos1y2=α, where 1x1,2y2 and xy2cos1xy2+1x21(y/2)2=α[cos1xcos1y=cos1(xy+1x21y2),xy2+1x21(y/2)2=cosα1x21(y/2)2=cosαxy2

On squaring both sides, we get

(1x2)1y24=cos2α+x2y242xy2cosα

1x2y24+x2y24=cos2α+x2y24xycosα

x2+y24xycosα=1cos2α

4x24xycosα+y2=4sin2α



NCERT Chapter Video Solution

Dual Pane