Inverse Circular Functions 2 Question 2

2. The value of cot n=119cot11+p=1n2p is

(a) 2322

(b) 2119

(c) 1921

(d) 2223

(2019 Main, 10 Jan II)

Show Answer

Answer:

Correct Answer: 2. (b)

Solution:

  1. Consider, cotn=119cot11+p=1n2p

=cotn=119cot1(1+n(n+1))n=119p=n(n+1)2=cotn=119cot1(1+n+n2)=cotn=119tan111+n(n+1)

[cot1x=tan11x, if x>0]

=cotn=119tan1(n+1)n1+n(n+1)[ put 1=(n+1)n]

=cotn=119(tan1(n+1)tan1n)

tan1xy1+xy=tan1xtan1y

=cot[(tan12tan11)+(tan13tan12)+

=cot(tan120tan11) .. +(tan120tan119)]

=cotπ2cot120π2cot11

[tan1x+cot1x=π/2]

=cot(cot11cot120)

=cot(cot11)cot(cot120)+1cot(cot120)cot(cot11)

=(1×20)+1201

[cot(AB)=cotAcotB+1cotBcotA

=2119 [cot(cot1x)=x]



NCERT Chapter Video Solution

Dual Pane