Indefinite Integration 4 Question 5

5. Let Sn=k=0nnn2+kn+k2 and Tn=k=0n1nn2+kn+k2, for n=1,2,3,, then

(a) Sn<π33

(b) Sn>π33

(c) Tn<π33

(d) Tn>π33

(2008,4 M)

Analytical & Descriptive Question

Show Answer

Answer:

Correct Answer: 5. (b, d)

Solution:

  1. Given, Sn=k=0nnn2+kn+k2

=k=0n1n11+kn+k2n2<limnk=0n1n11+kn+k2n=0111+x+x2dx=23tan123x+12=23π3π6=π33 i.e. Sn<π33

Similarly, Tn>π33



NCERT Chapter Video Solution

Dual Pane