Indefinite Integration 4 Question 4

4. For aR (the set of all real numbers), a1, limn(1a+2a++na)(n+1)a1[(na+1)+(na+2)++(na+n)]=160. Then, a is equal to

(a) 5

(b) 7

(c) 152

(d) 172

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. PLAN Converting Infinite series into definite Integral

 i.e. limnh(n)nlimn1nr=g(n)h(n)frn=f(x)dxlimng(n)n

where, rn is replaced with x.

Σ is replaced with integral.

limn1a+2a++na(n+1)a1(na+1)+(na+2)++(na+n)=160limnr=1nra(n+1)a1n2a+n(n+1)2=160

limn2r=1nrn1+1na1(2na+n+1)=160limn1n2r=1nrnalimn11+1na12a+1+1n=160201(xa)dx11(2a+1)=1602[xa+1]01(2a+1)(a+1)=1602(2a+1)(a+1)=160(2a+1)(a+1)=1202a2+3a+1120=02a2+3a119=0



NCERT Chapter Video Solution

Dual Pane