Indefinite Integration 4 Question 1

1. limn(n+1)1/3n4/3+(n+2)1/3n4/3+.+(2n)1/3n4/3 is equal to

(a) 43(2)4/3

(b) 34(2)4/343

(c) 34(2)4/334

(d) 43(2)3/4

Show Answer

Answer:

Correct Answer: 1. (c)

Solution:

  1. Let p=limn(n+1)1/3n4/3+(n+2)1/3n4/3++(2n)1/3n4/3

=limnr=1n(n+r)1/3n4/3

=limnr=1n1+rn1/3n1/3n4/3=limn1nr=1n1+rn1/3

Now, as per integration as limit of sum.

 Let rn=x and 1n=dx

[n]

Then, upper limit of integral is 1 and lower limit of integral is 0.

 So, p=01(1+x)1/3dxlimn1nr=1nfrn=01f(x)dx=34(1+x)4/3=34(24/31)=34(2)4/334



NCERT Chapter Video Solution

Dual Pane