Indefinite Integration 3 Question 7

7. If f(x)=x2x2+1et2dt, then f(x) increases in

(2003, 1M)

(a) (2,2)

(b) no value of x

(c) (0,)

(d) (,0)

Show Answer

Answer:

Correct Answer: 7. (d)

Solution:

  1. Given, f(x)=x2x2+1et2dt

On differentiating both sides using Newton’s Leibnitz’s formula, we get

f(x)=e(x2+1)2ddx(x2+1)e(x2)2ddx(x2)=e(x2+1)22xe(x2)22x=2xe(x4+2x2+1)(1e2x2+1)[ where, e2x2+1>1,x and e(x4+2x2+1)>0,x]f(x)>0

which shows 2x<0 or x<0x(,0)



NCERT Chapter Video Solution

Dual Pane