Indefinite Integration 3 Question 6

6. If $f(x)$ is differentiable and $\int _0^{t^{2}} x f(x) d x=\frac{2}{5} t^{5}$, then $f \frac{4}{25}$ equals

(2004, 1M)

(a) $\frac{2}{5}$

(b) $-\frac{5}{2}$

(c) 1

(d) $\frac{5}{2}$

Show Answer

Answer:

Correct Answer: 6. (a)

Solution:

  1. Here, $\int _0^{t^{2}} x f(x) d x=\frac{2}{5} t^{5}$

Using Newton Leibnitz’s formula, differentiating both sides, we get

$$ \begin{array}{lll} & t^{2}{f\left(t^{2}\right) } \frac{d}{d t}\left(t^{2}\right)-0 \cdot f(0) \frac{d}{d t}(0)=2 t^{4} \\ \Rightarrow & t^{2} f\left(t^{2}\right) 2 t=2 t^{4} \Rightarrow f\left(t^{2}\right)=t \\ \therefore & f \frac{4}{25}=-\frac{2}{5} & \text { putting } t=\frac{2}{5} \\ \Rightarrow & f \frac{4}{25}=\frac{2}{5} & \end{array} $$



NCERT Chapter Video Solution

Dual Pane