Indefinite Integration 3 Question 20

20. Determine a positive integer n5, such that 01ex(x1)ndx=166e

(1992,4M)

Show Answer

Answer:

Correct Answer: 20. At x=1 and 75,f(x) is maximum and minimum respectively.

Solution:

  1. Let In=01ex(x1)ndx

 Put x1=tdx=dt

In=10et+1tndt=e10tnetdt

=e[tnet]10n10tn1etdt

=e0(1)ne1n10tn1etdt

=(1)n+1ne10tn1etdt

In=(1)n+1nIn1

For n=1,I1=01ex(x1)dx=[ex(x1)]0101exdx

=e1(11)e0(01)[ex]01=1(e1)=2e

Therefore, from Eq. (i), we get

 and I2=(1)2+12I1=12(2e)=2e5I3=(1)3+13I2=13(2e5)=166e

Hence, n=3 is the answer.



NCERT Chapter Video Solution

Dual Pane