Indefinite Integration 3 Question 2

2. Let f:[0,2]R be a function which is continuous on [0,2] and is differentiable on (0,2) with f(0)=1.

Let F(x)=0x2f(t)dt, for x[0,2]. If F(x)=f(x), x(0,2), then F(2) equals

(a) e21

(b) e41

(c) e1

(d) e4

(2014 Adv)

Show Answer

Answer:

Correct Answer: 2. (b)

Solution:

  1. PLAN Newton-Leibnitz’s formula

ddxφ(x)ψ(x)f(t)dt=fψ(x)ddxΨ(x)fφ(x)ddxφ(x)

Given,

F(x)=0x2f(t)dt

F(x)=2xf(x) Also, F(x)=f(x)2xf(x)=f(x)f(x)f(x)=2xf(x)f(x)dx=2xdxInf(x)=x2+cf(x)=ex2+cf(x)=Kex2[K=ec] Now, f(0)=11=K

Hence,

f(x)=ex2

F(2)=04etdt=[et]04=e41



NCERT Chapter Video Solution

Dual Pane