Indefinite Integration 3 Question 19

19. Let $a+b=4$, where $a<2$ and let $g(x)$ be a differentiable function. If $\frac{d g}{d x}>0, \forall x$ prove that $\int _0^{a} g(x) d x+\int _0^{b} g(x) d x$ increases as $(b-a) \underset{(1997,5 M)}{\text { increases. }}$

Show Answer

Answer:

Correct Answer: 19. $(n=3)$

Solution:

  1. Let $t=b-a$ and $a+b=4$

[given]

$$ \begin{aligned} & \Rightarrow \quad t=4-a-a \\ & \Rightarrow \quad t=4-2 a \\ & \Rightarrow \quad a=2-\frac{t}{2} \\ & \text { and } \quad t=b-(4-b) \\ & \Rightarrow \quad t=2 b-4 \\ & \Rightarrow \quad \frac{t}{2}=b-2 \\ & \Rightarrow \quad b=2+\frac{t}{2} \end{aligned} $$

Again, $\quad a<2$

$$ \begin{array}{ll} \Rightarrow & 2-\frac{\pi}{2}<2 \\ \Rightarrow & \frac{\pi}{2}>0 \Rightarrow t>0 \end{array} $$

[given]

Now, $\int _0^{a} g(x) d x+\int _0^{b} g(x) d x$

$$ =\int _0^{2-t / 2} g(x) d x+\int _0^{2+t / 2} g(x) d x $$

Let $\quad F(x)=\int _0^{2-t / 2} g(x) d x+\int _0^{2+t / 2} g(x) d x$

For $t>0, F^{\prime}(t)=-\frac{1}{2} g \quad 2-\frac{t}{2}+\frac{1}{2} g \quad 2+\frac{t}{2}$

[using Leibnitz’s rule]

$$ =\frac{1}{2} g \quad 2+\frac{t}{2}-\frac{1}{2} g \quad 2-\frac{t}{2} $$

Again, $\quad \frac{d g}{d x}>0, \forall x \in R$

[given]

Now, $2-t / 2<2+t / 2 \therefore t>0$

We get $g(2+t / 2)-g(2-t / 2)>0, \forall t>0$

So, $\quad F^{\prime}(t)>0, \forall t>0$

Hence, $F(t)$ increases with $t$, therefore $F(t)$ increases as $(b-a)$ increases.



NCERT Chapter Video Solution

Dual Pane