Indefinite Integration 2 Question 3

3. Let g(x)=0xf(t)dt, where f is such that 12f(t)1 for t[0,1] and 0f(t)12 for t[1,2]. Then, g(2) satisfies the inequality

(2000,2M)

(a) 32g(2)<12

(b) 0g(2)<2

(c) 32<g(2)5/2

(d) 2<g(2)<4

Analytical & Descriptive Questions

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Given, g(x)=0xf(t)dt

g(2)=02f(t)dt=01f(t)dt+12f(t)dt

Now, 12f(t)1 for t[0,1] We get 0112dt01f(t)dt011dt

1201f(t)dt1

Again, 0f(t)12 for t[1,2]

120dt12f(t)dt12dt012f(t)dt12

From Eqs. (i) and (ii), we get

1201f(t)dt+12f(t)dt3212g(2)320g(2)<2



NCERT Chapter Video Solution

Dual Pane