Indefinite Integration 1 Question 89

90. If $\alpha=\int _0^{1}\left(e^{9 x+3 \tan ^{-1} x}\right) \frac{12+9 x^{2}}{1+x^{2}} d x$,

where $\tan ^{-1} x$ takes only principal values, then the value of $\log _e|1+\alpha|-\frac{3 \pi}{4}$ is

(2015 Adv.)

Show Answer

Answer:

Correct Answer: 90. (9)

Solution:

  1. Here, $\alpha=\int _0^{1} e^{\left(9 x+3 \tan ^{-1} x\right)} \frac{12+9 x^{2}}{1+x^{2}} d x$

Put $\quad 9 x+3 \tan ^{-1} x=t$

$\Rightarrow \quad 9+\frac{3}{1+x^{2}} d x=d t$

$\therefore \quad \alpha=\int _0^{9+3 \pi / 4} e^{t} d t=\left[e^{t}\right] _0^{9+3 \pi / 4}=e^{9+3 \pi / 4}-1$

$\Rightarrow \quad \log _e|1+\alpha|=9+\frac{3 \pi}{4}$

$\Rightarrow \quad \log _e|\alpha+1|-\frac{3 \pi}{4}=9$



NCERT Chapter Video Solution

Dual Pane