Indefinite Integration 1 Question 88

89. Let f:RR be a function defined by f(x)=[x],x2 0,x>2, where [x] denotes the greatest integer less than or equal to x. If I=12xf(x2)2+f(x+1)dx, then the value of (4I1) is

(2015 Adv.)

Show Answer

Answer:

Correct Answer: 89. (0)

Solution:

  1. Here, f(x)=[x],x2 0,x>2

I=12xf(x2)2+f(x+1)dx=10xf(x2)2+f(x+1)dx+01xf(x2)2+f(x+1)dx+12xf(x2)2+f(x+1)dx+23xf(x2)2+f(x+1)dx+32xf(x2)2+f(x+1)dx

=100dx+010dx+12x12+0dx+230dx+320dx

1<x<00<x2<1[x2]=0,

0<x<10<x2<1[x2]=0

1<x<21<x2<2[x2]=1

2<x<32<x2<3f(x2)=0

and 3<x<23<x2<4f(x2)=0

I=12x2dx=x2412=14(21)=144I=14I1=0



NCERT Chapter Video Solution

Dual Pane