Indefinite Integration 1 Question 87

88. Evaluate 01(tx+1x)ndx,

where n is a positive integer and t is a parameter independent of x. Hence, show that

01xk(1x)nkdx=1nCk(n+1), for k=0,1,,n

(1981,4M)

Integer Answer Type Questions

Show Answer

Answer:

Correct Answer: 88. tn+11(t1)(n+1)

Solution:

  1. Let I=01(tx+1x)ndx=01(t1)x+1ndx

=((t1)x+1)n+1(n+1)(t1)=1n+1tn+11t1=1n+1(1+t+t2++tn)

Again, I=01(tx+1x)ndx=01[(1x)+tx]ndx

=01[nC0(1x)n+nC1(1x)n1(tx)

nC2(1x)n2(tx)2++nCn(tx)n+]dx

=01r=0nnCr(1x)nr(tx)rdx

=r=0nnCr01(1x)nrxrdxtr

From Eqs. (i) and (ii), we get

r=0nnCr01(1x)nrxrdxtr=1n+1(1+t++tn)

On equating coefficient of tk on both sides, we get

nCk01(1x)nkxkdx=1n+101(1x)nkxkdx=1(n+1)nCk



NCERT Chapter Video Solution

Dual Pane