Indefinite Integration 1 Question 81

82. Evaluate 01log[(1x)+(1+x)]dx.

(1988, 5M)

Show Answer

Answer:

Correct Answer: 82. 12log212+π4

Solution:

  1. Let I=01log(1x+1+x)dx

Put x=cos2θ

dx=2sin2θdθ

I=2π/40log[1cos2θ+1+cos2θ](sin2θ)dθ

=2π/40log[2(sinθ+cosθ)]sin2θdθ

=2π/40[(log2)sin2θ

+log(sinθ+cosθ)sin2θ]dθ

=2log2cos2θ02π/40

2π/40log(sinθ+cosθ)sin2θdθ

=log22log(sinθ+cosθ)cos2θ2π/40

π/40cosθsinθcosθ+sinθ×cos2θ2dθ

=log(2)20+12π/40(cosθsinθ)2dθ

=12log2π/40(1sin2θ)dθ

=12log2θ+cos2θ2π/40

=12log212π4=12log212+π4



NCERT Chapter Video Solution

Dual Pane