Indefinite Integration 1 Question 78

79. Prove that for any positive integer k,

sin2kxsinx=2[cosx+cos3x++cos(2k1)x]

Hence, prove that 0π/2sin2kxcotxdx=π/2.

(1990,4 M)

Show Answer

Solution:

  1. We know that,

2sinx[cosx+cos3x+cos5x++cos(2k1)x]

=2sinxcosx+2sinxcos3x+2sinxcos5x

++2sinxcos(2k1)x

=sin2x+(sin4xsin2x)+(sin6xsin4x)

++sin2kxsin(2k2)x

=sin2kx

2[cosx+cos3x+cos5x++cos(2k1)x]

=sin2kxsinx

Now, sin2kxcotx=sin2kxsinxcosx

=2cosx[cosx+cos3x+cos5x++cos(2k1)x]

[from Eq. (i)]

=[2cos2x+2cosxcos3x+2cosxcos5x+ . +2cosxcos(2k1)x]

=(1+cos2x)+(cos4x+cos2x)

+(cos6x+cos4x)++cos2kx+cos(2k2)x

=1+2[cos2x+cos4x+cos6x++cos(2k2)x]

+cos2kx

0π/2(sin2kx)cotxdx

=0π/21dx+20π/2(cos2x+cos4xcos(2k2)x)dx +0π/2cos(2k)xdx

=π2+2sin2x2+sin4x4++sin(2k2)x(2k2)0π/2

+sin(2k)x2k0π/2=π2



NCERT Chapter Video Solution

Dual Pane