Indefinite Integration 1 Question 76

77. Evaluate 0πxsin(2x)sinπ2cosx2xπdx.

(1991,4 M)

Show Answer

Answer:

Correct Answer: 77. 8π2

Solution:

  1. Let I=0πxsin(2x)sinπ2cosx(2xπ)dx

Then I=0π(πx)sin2(πx)sinπ2cos(πx)2(πx)πdx

I=0π(πx)sin2xsinπ2cosxπ2xdxI=0π(xπ)sin2xsinπ2cosx(2xπ)dx

On adding Eqs. (i) and (iii), we get

2I=0πsin2xsinπ2cosxdx2I=20πsinxcosxsinπ2cosxdxI=0πsinxcosxsinπ2cosxdx

put π2cosx=tπ2sinxdx=dtsinxdx=2πdt

I=2ππ/2π/22tπsintdt

=4π2π/2π/2tsintdt

I=4π2[tcost+sint]π/2π/2=4π2×2=8π2



NCERT Chapter Video Solution

Dual Pane