Indefinite Integration 1 Question 74

75. Evaluate 232x5+x42x3+2x2+1(x2+1)(x41)dx.

(1993,5 M)

Show Answer

Answer:

Correct Answer: 75. 12log6110

Solution:

  1. Let I=232x5+x42x3+2x2+1(x2+1)(x41)dx

=232x52x3+x4+1+2x2(x2+1)(x21)(x2+1)dx=232x3(x21)+(x2+1)2(x2+1)2(x21)dx=232x3(x21)(x2+1)2(x21)dx+23(x2+1)2(x2+1)2(x21)dx=232x3(x2+1)2dx+231(x21)dxI=I1+I2

Now, I1=232x3(x2+1)2dx

Put x2+1=t2xdx=dt

I1=510(t1)t2dt=5101tdt5101t2dt=[logt]510+1t=log10log5+11015=log2110

Again, I2=231(x21)dx=231(x1)(x+1)dx

=12231(x1)dx12231(x+1)dx

=12log(x1)312log(x+1)=12log2112log43

From Eq. (i), I=I1+I2

=log2110+12log212log43=log[221/241/23]110=12log6110



NCERT Chapter Video Solution

Dual Pane