Indefinite Integration 1 Question 73

74. Evaluate the definite integral

1/31/3x41x4cos12x1+x2dx

(1995,5M)

Show Answer

Solution:

  1. Let I=1/31/3x41x4cos12x1+x2dx

Put x=ydx=dy

I=1/31/3y41y4cos12y1+y2(1)dy Now, cos1(x)=πcos1x for 1x1.

I=1/31/3y41y4πcos12y1+y2dy=π1/31/3y41y4dy1/31/3y41y4cos12y1+y2dy=π1/31/3x41x4dx1/31/3x41x4cos12x1+x2dxI=π1/31/3x41x4dxI2I= [from Eq. (i)] =1/3x41x4dx=π1/31/31+11x4dx=2I=π[x]1/31/3+πI1, where I1=1/31/3dx1x413+13+πI1=2π3+πI1

Now, I1=1/31/3dx1x4=201/3dx1x4

[since, the integral is an even function]

=01/31+1+x2x2(1x2)(1+x2)dx

=01/311x2dx+01/311+x2dx

=01/31(1x)(1+x)dx+01/31(1+x2)dx

=1201/311xdx+1201/311+xdx+01/311+x2dx

=12ln|1x|+12ln|1+x|+tan1x01/3

=12ln1+x1x01/3+[tan1x]01/3

=12ln1+1/311/3+tan113

=12ln3+131+π6=12ln(3+1)231+π6

=12ln(2+3)+π6

2I=2π3+π2ln(2+3)+π26

=π6[π+3ln(2+3)43]

I=π12[π+3ln(2+3)43]

Alternate Solution

Since, cos1y=π2sin1y

cos12x1+x2=π2sin12x1+x2=π22tan1x

I=1/31/3π2x41x4x41x42tan1xdx

x41x42tan1x is an odd function

I=2π20131+11x4dx+0

=π201/32+11x2+11+x2dx

=π22x+121log1+x1x+tan1x01/3

=π223+12log3+131+π6

=π12[π+3log(2+3)43]



NCERT Chapter Video Solution

Dual Pane