Indefinite Integration 1 Question 70

71. Prove that 01tan111x+x2dx=201tan1xdx.

Hence or otherwise, evaluate the integral

01tan1(1x+x2)dx

(1998,8 M)

Show Answer

Solution:

  1. 01tan111x+x2dx=01tan11x+x1x(1x)dx

=01[tan1(1x)tan1x]dx=01tan1[1(1x)]dx+01tan1xdx=201tan1xdx0af(x)dx=0af(ax)dx

Now, 01tan111x+x2dx

=01π2cot111x+x2dx=π201tan1(1x+x2)dx01tan1(1x+x2)dx=π201tan11(1x+x2)dx=π22I1

where, I1=01tan1xdx=[xtan1x]0101xdx1+x2

=π412[log(1+x2)]01=π412log201tan1(1x+x2)dx=π22π412log2=log2



NCERT Chapter Video Solution

Dual Pane