Indefinite Integration 1 Question 7

8. If f(x)=2xcosx2+xcosx and g(x)=logex,(x>0) then the value of the integral π/4π/4g(f(x))dx is

(a) loge3

(b) logee

(c) loge2

(d) loge1

(2019 Main, 8 April I)

Show Answer

Solution:

  1. The given functions are

g(x)=logex,x>0 and f(x)=2xcosx2+xcosx

Let

I=π/4π/4g(f(x))dx

Then, I=π/4π/4loge2xcosx2+xcosxdx

Now, by using the property

abf(x)dx=abf(a+bx)dx, we get I=π/4π/4loge2+xcosx2xcosxdx

On adding Eqs. (i) and (ii), we get

2I=π/4π/4loge2xcosx2+xcosx+loge2+cosx2xcosxdx=π/4π/4loge2xcosx2+xcosx×2+xcosx2xcosxdx[logeA+logeB=logeAB]2I=π/4π/4loge(1)dx=0I=0=loge(1)



NCERT Chapter Video Solution

Dual Pane