Indefinite Integration 1 Question 67

68. Evaluate π/3π/3π+4x32cos|x|+π3dx.

(2004,4 M)

Show Answer

Solution:

  1. Let I=π/3π/3πdx2cos|x|+π3+4π/3π/3x3dx2cos|x|+π3

 Using aaf(x)dx=0af(x)dx,f(x)=f(x)I=20π/3πdx2cos|x|+π3+0x3dx2cos|x|+π3 is odd I=2π0π/3dx2cos(x+π/3)

Put x+π3=tdx=dt

I=2ππ/32π/3dt2cost=2ππ/32π/3sec2t2dt1+3tan2t2

Put tant2=usec2t2dt=2du

I=2π1/332du1+3u2=4π3[3tan13u]133=4π3(tan13tan11)=4π3tan112π/3π/3π+4x32cos|x|+π3dx=4π3tan112



NCERT Chapter Video Solution

Dual Pane