Indefinite Integration 1 Question 6

7. Let f(x)=0xg(t)dt, where g is a non-zero even function. If f(x+5)=g(x), then 0xf(t)dt equals

(2019 Main, 8 April II)

(a) 5x+55g(t)dt

(b) 5x+5g(t)dt

(c) 25xg(t)dt

(d) x+55g(t)dt

Show Answer

Solution:

  1. Given, f(x)=0xg(t)dt

On replacing x by (x), we get

f(x)=0xg(t)dt

Now, put t=u, so

f(x)=0xg(u)du=0xg(u)du=f(x)

[g is an even function] f(x)=f(x)f is an odd function.

Now, it is given that f(x+5)=g(x)

f(5x)=g(x)=g(x)=f(x+5)f(5x)=f(x+5)

Put t=u+5t5=udt=du

I=5x5f(u+5)du=5x5g(u)du Put u=tdu=dt, we get I=55xg(t)dt=5x5g(t)dt

[abf(x)dx=baf(x)dx and g is an even function] I=x5f(t)dt [by Leibnitz rule f(x)=g(x)]=f(5)f(5x)=f(5)f(5+x) [from Eq. (i)] =5+x5f(t)dt=5+x5g(t)dt



NCERT Chapter Video Solution

Dual Pane