Indefinite Integration 1 Question 57

58. For n>0,02πxsin2nxsin2nx+cos2nxdx=

(1997,2M)

Show Answer

Solution:

  1. Let I=02πxsin2nxsin2nx+cos2nxdx

I=02π(2πx)[sin(2πx)]2n[sin(2πx)]2n+[cos(2πx)]2ndx

[0af(x)dx=0af(ax)dx]

I=02π(2πx)sin2nxsin2nx+cos2nxdx

I=02π2πsin2nxsin2nx+cos2nxdx02πxsin2nxsin2nx+cos2nxdx

I=02π2πsin2nxsin2nx+cos2nxdxI

[from Eq. (i)]

I=02ππsin2nxsin2nx+cos2nxdx

I=π0ππsin2nxsin2nx+cos2nxdx

+0πsin2n(2πx)sin2n(2πx)+cos2n(2πx)dx

 using property 

02af(x)dx=0a[f(x)+f(2ax)]dx

I=π0πsin2nxdxsin2nx+cos2nxdx

+0πsin2nxsin2nx+cos2nxdx

I=2π0πsin2nxdxsin2nx+cos2nxdx

I=4π0π/2sin2nxdxsin2nx+cos2nxdx

I=4π0π/2sin2n(π/2x)sin2n(π/2x)+cos2n(π/2x)dx

I=4π0π/2cos2nxcos2nx+sin2nxdx

On adding Eqs. (ii) and (iii), we get

2I=4π0π/2sin2nx+cos2nxsin2nx+cos2nxdx2I=4π0π/21dx=4π[x]0π/2=4ππ2I=π2



NCERT Chapter Video Solution

Dual Pane