Indefinite Integration 1 Question 42

43. If 13x2F(x)dx=12 and 13x3F(x)dx=40, then the correct expression(s) is/are

(a) 9f(3)+f(1)32=0

(b) 13f(x)dx=12

(c) 9f(3)f(1)+32=0

(d) 13f(x)dx=12

Passage II

For every function f(x) which is twice differentiable, these will be good approximation of

abf(x)dx=ba2f(a)+f(b),

for more acurate results for c(a,b),

F(c)=ca2[f(a)f(c)]+bc2[f(b)f(c)]

When c=a+b2

abf(x)dx=ba4f(a)+f(b)+2f(c)dx

(2006,6M)

Show Answer

Solution:

  1. Given, 13x2F(x)dx=12

[x2F(x)]13132xF(x)dx=12

9F(3)F(1)213f(x)dx=12

360213f(x)dx=1213f(x)dx=12 and 13x3F(x)dx=40

[x3F(x)]13133x2F(x)dx=40

[x2(xF(x)]133×(12)=40

x2[f(x)F(x)]13=4

9[f(3)F(3)][f(1)F(1)]=4

9[f(3)+4][f(1)0]=4

9f(3)f(1)=32



NCERT Chapter Video Solution

Dual Pane