Indefinite Integration 1 Question 39

40. The value of the integral $\int _0^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$ is

(a) $\pi / 4$

(b) $\pi / 2$

(c) $\pi$

(d) None of these

$(1983,1 M)$

Assertion and Reason

Show Answer

Solution:

  1. Let $I=\int _0^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$

$\Rightarrow \quad I=\int _0^{\pi / 2} \frac{\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$

On adding Eqs. (i) and (ii), we get

$$ \begin{aligned} & 2 I=\int _0^{\pi / 2} 1 d x \\ \therefore \quad I & =\frac{\pi}{4} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane