Indefinite Integration 1 Question 22

23. The value of log2log3xsinx2sinx2+sin(log6x2)dx is (2011)

(a) 14log32

(b) 12log32

(c) log32

(d) 16log32

Show Answer

Solution:

  1. Put x2=txdx=dt/2

I=log2log3sintdt2sint+sin(log6t)

Using, abf(x)dx=abf(a+bx)dx

=12log2log3sin(log2+log3t)sin(log2+log3t)+sindt=12log2log3sin(log6t)sin(log6t)+sin(t)dtI=log2log3sin(log6t)sin(log6t)+sintdt

On adding Eqs. (i) and (ii), we get

2I=12log2log3sint+sin(log6t)sin(log6t)+sintdt2I=12(t)log2log3=12(log3log2)I=14log32



NCERT Chapter Video Solution

Dual Pane