Indefinite Integration 1 Question 18

19. The integral 24logx2logx2+log(3612x+x2)dx is equal to

(2015, Main)

(a) 2

(b) 4

(c) 1

(d) 6

Show Answer

Solution:

  1. PLAN Apply the property

abf(x)dx=abf(a+bx)dx and then add. 

Let I=24logx2logx2+log(3612x+x2)dx

=242logx2logx+log(6x)2dx=242logxdx2[logx+log(6x)]

I=24logxdx[logx+log(6x)]I=24log(6x)log(6x)+logxdxabf(x)dx=abf(a+bx)dx

On adding Eqs. (i) and (ii), we get

2I=24logx+log(6x)logx+log(6x)dx2I=24dx=[x]242I=22I=2I=1



NCERT Chapter Video Solution

Dual Pane