Indefinite Integration 1 Question 15

16. The value of π/2π/2sin2x1+2xdx is

(2018 Main)

(a) π8

(b) π2

(c) 4π

(d) π4

Show Answer

Solution:

  1. Key idea Use property =abf(x)dx=abf(a+bx)dx

 Let I=π/2π/2sin2x1+2xdxI=π/2π/2sin2π2+π2x1+2π2+π2xdxabf(x)dx=abf(a+bx)dxI=π/2π/2sin2x1+2xdxI=π/2π/22xsin2x2x+1dx2I=π/2π/2sin2x2x+12x+1dx2I=π/2π/2sin2xdx

2I=20π/2sin2xdx[sin2x is an even function ]I=0π/2sin2xdxI=0π/2cos2xdx0af(x)dx=0af(ax)dx2I=0π/2dx2I=[x]0π/2I=π4



NCERT Chapter Video Solution

Dual Pane