Indefinite Integration 1 Question 1

2. If 0π/2cotxcotx+cosecxdx=m(π+n), then mn is equal to

(a) 12

(b) 1

(c) 12

(d) -1

Show Answer

Solution:

  1. Let I=0π/2cotxcotx+cosecxdx

=0π/2cosxsinxcosxsinx+1sinxdx=0π/2cosx1+cosxdx=0π/2cosx(1cosx)1cos2xdx=0π/2cosxcos2xsin2xdx=0π/2(cosecxcotxcot2x)dx=0π/2(cosecxcotxcosec2x+1)dx=[cosecx+cotx+x]0π/2=x+cosx1sinx0x+2sin2x22sinx2cosx20=xtanx2=π21=12[π2]=m[π+n]

On comparing, we get m=12 and n=2

[given]

mn=1

(given)

Alternate Solution

Let I=0π/2cotxcotx+cosecxdx

=0π/2cosxsinxcosxsinx+1sinxdx

=0π/2cosxcosx+1dx

=0π/22cos2x212cos2x2dx

cosθ=2cos2θ21 and cosθ+1=2cos2θ2

=0π/2112sec2x2dx

=xtanx20π/2=π21=12(π2)

Since, I=m(πn)

m(πn)=12(π2)

On comparing both sides, we get

m=12 and n=2

Now, mn=12×2=1



NCERT Chapter Video Solution

Dual Pane