Hyperbola 3 Question 3

3.

Tangents are drawn from any point on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ to the circle $x^{2}+y^{2}=9$. Find the locus of mid-point of the chord of contact.

(2005, 4M)

Show Answer

Answer:

Correct Answer: 3. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=\frac{\left(x^{2}+y^{2}\right)^{2}}{81}$

Solution:

  1. Let any point on the hyperbola is $(3 \sec \theta, 2 \tan \theta)$.

$\therefore$ Chord of contact of the circle $x^{2}+y^{2}=9$ with respect to the point $(3 \sec \theta, 2 \tan \theta)$ is,

$ (3 \sec \theta) x+(2 \tan \theta) y=9 $

Let $\left(x _1, y _1\right)$ be the mid-point of the chord of contact.

$\Rightarrow$ Equation of chord in mid-point form is

$ x x _1+y y _1=x _1^{2}+y _1^{2} $

Since, Eqs. (i) and (ii) are identically equal.

$\therefore \frac{3 \sec \theta}{x _1} =\frac{2 \tan \theta}{y _1} $

$ =\frac{9}{x _1^{2}+y _1^{2}} $

$\Rightarrow \sec \theta =\frac{9 x _1}{3\left(x _1^{2}+y _1^{2}\right)} $

$\text { and } \tan \theta =\frac{9 y _1}{2\left(x _1^{2}+y _1^{2}\right)}$

Thus, eliminating ’ $\theta$ ’ from above equation, we get

$ \frac{81 x _1^{2}}{9\left(x _1^{2}+y _1^{2}\right)^{2}}-\frac{81 y _1^{2}}{4\left(x _1^{2}+y _1^{2}\right)^{2}}=1 $

$ \left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right] $

$\therefore$ Required locus is $\frac{x^{2}}{9}-\frac{y^{2}}{4}=\frac{\left(x^{2}+y^{2}\right)^{2}}{81}$.



NCERT Chapter Video Solution

Dual Pane