Hyperbola 2 Question 9

9.

Let P(asecθ,btanθ) and Q(asecφ,btanφ), where θ+φ=π2, be two points on the hyperbola x2a2y2b2=1.

If (h,k) is the point of the intersection of the normals at P and Q, then k is equal to

(1999,2M)

(a) a2+b2a

(b) a2+b2a

(c) a2+b2b

(d) a2+b2b

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. Firstly, we obtain the slope of normal to x2a2y2b2=1 at (asecθ,btanθ). On differentiating w.r.t. x, we get

2xa22yb2×dydx=0dydx=b2a2xy

Slope for normal at the point ( asecθ,btanθ ) will be

a2btanθb2asecθ=absinθ

Equation of normal at (asecθ,btanθ) is

ybtanθ=absinθ(xasecθ)(asinθ)x+by=(a2+b2)tanθax+bcosecθ=(a2+b2)secθ

Similarly, equation of normal to x2a2y2b2=1 at

(asecφ,btanφ) is ax+bycosecφ=(a2+b2)secφ

On subtracting Eq. (ii) from Eq. (i), we get

b(cosecθcosecφ)y=(a2+b2)(secθsecφ)

y=a2+b2bsecθsecφcosecθcosecφ

But secθsecφcosecθcosecφ=secθsec(π/2θ)cosecθcosec(π/2θ)

=secθcosecθsecθsecθ=1

y=a2+b2b, i.e. k=a2+b2b



NCERT Chapter Video Solution

Dual Pane