Hyperbola 2 Question 13

Passage Based Problems

The circle $x^{2}+y^{2}-8 x=0$ and hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ intersect at the points $A$ and $B$.

(2010)

13.

Equation of the circle with $A B$ as its diameter is

(a) $x^{2}+y^{2}-12 x+24=0$

(b) $x^{2}+y^{2}+12 x+24=0$

(c) $x^{2}+y^{2}+24 x-12=0$

(d) $x^{2}+y^{2}-24 x-12=0$

Show Answer

Answer:

Correct Answer: 13. (a)

Solution:

  1. The equation of the hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ and that of circle is $x^{2}+y^{2}-8 x=0$

For their points of intersection, $\frac{x^{2}}{9}+\frac{x^{2}-8 x}{4}=1$

$ \begin{array}{lr} \Rightarrow & 4 x^{2}+9 x^{2}-72 x=36 \\ \Rightarrow & 13 x^{2}-72 x-36=0 \\ \Rightarrow & 13 x^{2}-78 x+6 x-36=0 \\ \Rightarrow & 13 x(x-6)+6(x-6)=0 \\ \Rightarrow & x=6, x=-\frac{13}{6} \end{array} $

$x=-\frac{13}{6}$ not acceptable.

Now, for $x=6, y= \pm 2 \sqrt{3}$

Required equation is, $(x-6)^{2}+(y+2 \sqrt{3})(y-2 \sqrt{3})=0$

$ \begin{array}{ll} \Rightarrow & x^{2}-12 x+y^{2}+24=0 \\ \Rightarrow & x^{2}+y^{2}-12 x+24=0 \end{array} $



NCERT Chapter Video Solution

Dual Pane