Hyperbola 1 Question 9

10.

Consider a branch of the hyperbola

$ x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0 $

with vertex at the point $A$. Let $B$ be one of the end points of its latusrectum. If $C$ is the focus of the hyperbola nearest to the point $A$, then the area of the $\triangle A B C$ is

(a) $1-\sqrt{2 / 3}$ sq unit

(b) $\sqrt{3 / 2}-1$ sq unit

(c) $1+\sqrt{2 / 3}$ sq unit

(d) $\sqrt{3 / 2}+1$ sq unit

(2008, 3M)

Show Answer

Answer:

Correct Answer: 10. (b)

Solution:

  1. Given equation can be rewritten as focal chord

$ \frac{(x-\sqrt{2})^{2}}{4}-\frac{(y+\sqrt{2})^{2}}{2}=1 $

For point $A(x, y), e=\sqrt{1+\frac{2}{4}}=\sqrt{\frac{3}{2}}$

$ \begin{aligned} \Rightarrow & & x-\sqrt{2} & =2 \\ \Rightarrow & & x & =2+\sqrt{2} \end{aligned} $

For point $C(x, y), x-\sqrt{2}=a e=\sqrt{6} \Rightarrow x=\sqrt{6}+\sqrt{2}$

Now, $\quad A C=\sqrt{6}+\sqrt{2}-2-\sqrt{2}=\sqrt{6}-2$

and $\quad B C=\frac{b^{2}}{a}=\frac{2}{2}=1$

$\therefore$ Area of $\triangle A B C=\frac{1}{2} \times(\sqrt{6}-2) \times 1=\sqrt{\frac{3}{2}}-1$ sq unit



NCERT Chapter Video Solution

Dual Pane