Hyperbola 1 Question 2

3.

If a directrix of a hyperbola centred at the origin and passing through the point (4,23) is 5x=45 and its eccentricity is e, then

(2019 Main, 10 April I)

(a) 4e412e227=0

(b) 4e424e2+27=0

(c) 4e4+8e235=0

(d) 4e424e2+35=0

Show Answer

Answer:

Correct Answer: 3. (d)

Solution:

  1. Let the equation of hyperbola is

x2a2y2b2=1

Since, equation of given directrix is 5x=45

 so 5ae=45[ equation of directrix is x=ae]ae=45

and hyperbola (i) passes through point (4,23)

 so, 16a212b2=1

The eccentricity e=1+b2a2

e2=1+b2a2a2e2a2=b2

From Eqs. (ii) and (iv), we get

165e4165e2=b2

From Eqs. (ii) and (iii), we get

16165e212b2=15e212b2=112b2=5e2112b2=5e2e2b2=12e25e2

From Eqs. (v) and (vi), we get

16e416e2=512e25e216(e21)(5e2)=604(5e2e45+e2)=154e424e2+35=0



NCERT Chapter Video Solution

Dual Pane