Hyperbola 1 Question 10

11.

A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then, its equation is

(a) $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1$

(b) $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$

(c) $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$

(d) $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

$(2007,3 M)$

Show Answer

Answer:

Correct Answer: 11. (a)

Solution:

  1. The given ellipse is

$ \frac{x^{2}}{4}+\frac{y^{2}}{3} =1 \Rightarrow a=2, b=\sqrt{3} $

$\therefore 3 =4\left(1-e^{2}\right) \Rightarrow \quad e=\frac{1}{2} $

$\text { So, } a =2 \times \frac{1}{2}=1$

Hence, the eccentricity $e _1$ of the hyperbola is given by

$e _1 =\operatorname{cosec} \theta \quad[\because a e=e \sin \theta] $

$\Rightarrow \quad b^{2} =\sin ^{2} \theta\left(\operatorname{cosec}^{2} \theta-1\right) =\cos ^{2} \theta$

Hence, equation of hyperbola is

$\frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{\cos ^{2} \theta}=1$ or $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1$.



NCERT Chapter Video Solution

Dual Pane