Functions 2 Question 11

12.

Let $f(x)=|x-1|$. Then,

(1983, 1M)

(a) $f\left(x^{2}\right)={f(x)}^{2}$

(b) $f(x+y)=f(x)+f(y)$

(c) $f(|x|)=|f(x)|$

(d) None of the above

Show Answer

Answer:

Correct Answer: 12. (d)

Solution:

  1. Given, $f(x)=|x-1|$

$\therefore \quad f\left(x^{2}\right)=\left|x^{2}-1\right|$

and $\quad{f(x)}^{2}=(x-1)^{2}$

$\Rightarrow \quad f\left(x^{2}\right) \neq(f(x))^{2}$, hence (a) is false.

Also, $f(x+y)=|x+y-1|$

and $\quad f(x)=|x-1|$

$f(y)=|y-1|$

$\Rightarrow \quad f(x+y) \neq f(x)+f(y)$, hence (b) is false.

$ f(|x|)=|| x|-1| $

and $\quad|f(x)|=|| x-1||=|x-1|$

$\therefore \quad f(|x|) \neq|f(x)|$, hence (c) is false.



NCERT Chapter Video Solution

Dual Pane