Functions 2 Question 10

11.

If $f(x)=\cos (\log x)$, then $f(x) \cdot f(y)-\frac{1}{2} f \frac{x}{y}+f(x y)$ has the value

(1983, 1M)

(a) -1

(b) $\frac{1}{2}$

(c) -2

(d) None of these

Show Answer

Answer:

Correct Answer: 11. (d)

Solution:

  1. Given, $f(x)=\cos (\log x)$

$\therefore f(x) \cdot f(y)-\frac{1}{2} [f \frac{x}{y}+f(x y)]$

$=\cos (\log x) \cdot \cos (\log y)-\frac{1}{2}[\cos (\log x-\log y)$

$+\cos (\log x+\log y)]$

$=\cos (\log x) \cdot \cos (\log y)-\frac{1}{2}[(2 \cos (\log x) \cdot \cos (\log y)]$

$=\cos (\log x) \cdot \cos (\log y)-\cos (\log x) \cdot \cos (\log y)=0$



NCERT Chapter Video Solution

Dual Pane