Functions 1 Question 4

4.

Range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1} ; x \in R$ is

(a) $(1, \infty)$

(b) $(1,11 / 7)$

(c) $(1,7 / 3]$

(d) $(1,7 / 5)$

$(2003,2 M)$

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. Let $y=f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}, x \in R$

$\therefore y=\frac{x^{2}+x+2}{x^{2}+x+1} $

$ y=1+\frac{1}{x^{2}+x+1} \quad $ [i.e. $y>1 $]

$\Rightarrow y x^{2}+y x+y=x^{2}+x+2 $

$\Rightarrow x^{2}(y-1)+x(y-1)+(y-2)=0, \forall x \in R $

$\text { Since, } x \text { is real, } D \geq 0 $

$\Rightarrow (y-1)^{2}-4(y-1)(y-2) \geq 0 $

$\Rightarrow (y-1){(y-1)-4(y-2)} \geq 0$

$\Rightarrow (y-1)(-3 y+7) \geq 0 $

$\Rightarrow 1 \leq y \leq \frac{7}{3}$

From Eqs. (i) and (ii), Range $\in 1, \frac{7}{3}$



NCERT Chapter Video Solution

Dual Pane