Functions 1 Question 10
Match the Columns
Match the conditions/expressions in Column I with statement in Column II.
10.
Let $f(x)=\frac{x^{2}-6 x+5}{x^{2}-5 x+6}$.
$(2007,6$ M)
Column I | Column II | ||
---|---|---|---|
A. | If $-1<x<1$, then $f(x)$ satisfies | p. | $0<f(x)<1$ |
B. | If $1<x<2$, then $f(x)$ satisfies | q. | $f(x)<0$ |
C. | If $3<x<5$, then $f(x)$ satisfies | r. | $f(x)>0$ |
D. | If $x>5$, then $f(x)$ satisfies | s. | $f(x)<1$ |
Show Answer
Answer:
Correct Answer: 10. $(A \rightarrow p;B \rightarrow q;C \rightarrow q;D \rightarrow p;)$
Solution:
- Given, $f(x)=\frac{(x-1)(x-5)}{(x-2)(x-3)}$
The graph of $f(x)$ is shown as:
A. If $-1<x<1 \Rightarrow 0<f(x)<1$
B. If $1<x<2 \Rightarrow f(x)<0$
C. If $3<x<5 \Rightarrow f(x)<0$
D. If $x>5 \Rightarrow 0<f(x)<1$