Functions 1 Question 1

1.

The domain of the definition of the function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is

(2019 Main, 9 April II)

(a) $(-1,0) \cup(1,2) \cup(3, \infty)$

(b) $(-2,-1) \cup(-1,0) \cup(2, \infty)$

(c) $(-1,0) \cup(1,2) \cup(2, \infty)$

(d) $(1,2) \cup(2, \infty)$

Show Answer

Answer:

Correct Answer: 1. (c)

Solution:

  1. Given function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$

For domain of $f(x)$

$ \begin{array}{lrl} & & 4-x^{2} \neq 0 \Rightarrow x \neq \pm 2 \\ \text { and } & & x^{3}-x>0 \\ \Rightarrow & & x(x-1)(x+1)>0 \end{array} $

From Wavy curve method,

$x \in(-1,0) \cup(1, \infty)$

From Eqs. (i) and (ii), we get the domain of $f(x)$ as $(-1,0) \cup(1,2) \cup(2, \infty)$.



NCERT Chapter Video Solution

Dual Pane