Ellipse 2 Question 16

16. The number of values of $c$ such that the straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$ is

(a) 0

(b) 2

(c) 1

(d) $\infty$

$(1998,2 M)$

Show Answer

Answer:

Correct Answer: 16. (b)

Solution:

  1. For ellipse, condition of tangency is $c^{2}=a^{2} m^{2}+b^{2}$

Given line is $y=4 x+c$ and curve $\frac{x^{2}}{4}+y^{2}=1$

$ \begin{array}{ll} \Rightarrow & c^{2}=4 \times 4^{2}+1=65 \\ \Rightarrow & c= \pm \sqrt{65} \end{array} $

So, there are two different values of $C$.



NCERT Chapter Video Solution

Dual Pane