Ellipse 1 Question 12

13. The orthocentre of $\Delta F _1 M N$ is

(a) $-\frac{9}{10}, 0$

(b) $\frac{2}{3}, 0$

(c) $\frac{9}{10}, 0$

(d) $\frac{2}{3}, \sqrt{6}$

Show Answer

Answer:

Correct Answer: 13. $a$

Solution:

  1. Here, $\frac{x^{2}}{9}+\frac{y^{2}}{8}=1$

has foci $( \pm a e, 0)$

where, $ a^{2} e^{2}=a^{2}-b^{2} $

$\Rightarrow$ $ a^{2} e^{2}=9-8 $

$\Rightarrow$ $ a e= \pm 1 $

i.e. $ F _1, F _2=( \pm 1,0) $

Equation of parabola having vertex $O(0,0)$ and $F _2(1,0)$ (as, $x _2>0$ )

On solving $\begin{aligned} y^{2} & =4 x \\ \frac{x^{2}}{9}+\frac{y^{2}}{8} & =1 \text { and } y^{2}=4 x \text {, we get } \\ x & =3 / 2 \text { and } y= \pm \sqrt{6}\end{aligned}$

Equation of altitude through $M$ on $N F _1$ is

$ \begin{aligned} \frac{y-\sqrt{6}}{x-3 / 2} & =\frac{5}{2 \sqrt{6}} \\ \Rightarrow \quad(y-\sqrt{6}) & =\frac{5}{2 \sqrt{6}}(x-3 / 2) \end{aligned} $

and equation of altitude through $F _1$ is $y=0$

On solving Eqs. (iii) and (iv), we get $-\frac{9}{10}, 0$ as orthocentre.



NCERT Chapter Video Solution

Dual Pane