Differential Equations 2 Question 5

5. If cosxdydxysinx=6x,0<x<x2 and yπ3=0, then yπ6 is equal to

(2019 Main, 9 April II)

(a) π223

(b) π223

(c) π243

(d) π22

Show Answer

Answer:

Correct Answer: 5. (b)

Solution:

Key Idea (i) First convert the given differential equation into linear differential equation of the form dydx+Py=Q

(ii) Find IF

(iii) Apply formula, y(IF)=Q(IF)dx+C

Given differential equation

cosxdydx(sinx)y=6xdydx(tanx)y=6xcosx, which is the linear 

differential equation of the form

dydx+Px=Q

where P=tanx and Q=6xcosx

So, IF=etanxdx=elog(secx)=cosx

Required solution of differential equation is y(cosx)=(6x)cosxcosxdx+C=6x22+C=3x2+C

Given,

yπ3=0

So, 0=3π32+CC=π23

y(cosx)=3x2π23

Now, at x=π6

y32=3π236π23=π24y=π223



NCERT Chapter Video Solution

Dual Pane