Differential Equations 2 Question 3

3.

Let y=y(x) be the solution of the differential equation, dydx+ytanx=2x+x2tanx,x(π2,π2), such that y(0)=1. Then

(2019 Main, 10 April II)

(a) y(π4)y(π4)=π2

(b) y(π4)+y(π4)=2

(c) y(π4)+y(π4)=π22+2

(d) y(π4)y(π4)=2

Show Answer

Answer:

Correct Answer: 3. (a)

Solution:

  1. Given differential equation is

dydx+ytanx=2x+x2tanx, which is linear differential equation in the form of dydx+Py=Q.

Here, P=tanx and Q=2x+x2tanx

IF=etanxdx=eloge(secx)=secx

Now, solution of linear differential equation is given as

y×IF=(Q×IF)dx+Cy(secx)=(2x+x2tanx)secxdx+C=(2xsecx)dx+x2secxtanxdx+Cx2secxtanxdx=x2secx(2xsecx)dx

Therefore, solution is

ysecx=2xsecxdx+x2secx2xsecxdx+C

ysecx=x2secx+C (i)

y(0)=11(1)=0(1)+CC=1

Now, y=x2+cosx

and y=2xsinx

According to options,

y(π4)y(π4)=(2π412)

(2(π4)+12)=π2

and y(π4)+y(π4)=2π412+2π4+12=0

and y(π4)+y(π4)=π216+12+π216+12=π24+2

and y(π4)y(π4)=π216+12π21612=0



NCERT Chapter Video Solution

Dual Pane