Differential Equations 2 Question 24

25. Let y(x)+y(x)g(x)=g(x)g(x),y(0)=0,xR, where f(x) denotes df(x)dx and g(x) is a given non-constant differentiable function on R with g(0)=g(2)=0. Then, the value of y(2) is ……

(2011)

Show Answer

Solution:

  1. dydx+yg(x)=g(x)g(x)

IF=eg(x)dx=eg(x)

Solution is y(eg(x))=g(x)g(x)eg(x)dx+C

 Put g(x)=t,g(x)dx=dty(eg(x))=tetdt+C=tet1etdt+C=tetet+Cyeg(x)=(g(x)1)eg(x)+Cy(0)=0,g(0)=g(2)=0

Eq. (i) becomes,

y(0)eg(0)=(g(0)1)eg(0)+C0=(1)1+CC=1y(x)eg(x)=(g(x)1)eg(x)+1y(2)eg(2)=(g(2)1)eg(2)+1, where g(2)=0y(2)1=(1)1+1y(2)=0



NCERT Chapter Video Solution

Dual Pane