Differential Equations 2 Question 22

23.

If y(x) satisfies the differential equation yytanx=2xsecx and y(0), then

(2012)

(a) y(π4)=π282

(b) y(π4)=π218

(c) y(π3)=π29

(d) y(π3)=4π3+2π233

Show Answer

Answer:

Correct Answer: 23. (a, d)

Solution:

  1. PLAN: Linear differential equation under one variable.

dydx+Py=Q;IF=ePdx

 Solution is, y(IF)=Q(IF) d x+C $

yytanx=2xsecx and y(0)=0

dydxytanx=2xsecx

IF=etanxdx=elog|cosx|=cosx

Solution is ycosx=2xsecxcosxdx+C

ycosx=x2+C

 As y(0)=0C=0

y=x2secx

 Now, y(π4)=π282

y(π4)=π2+π282

y(π3)=2π29y(π3)=4π3+2π233



NCERT Chapter Video Solution

Dual Pane