Differential Equations 2 Question 22

23.

If $y(x)$ satisfies the differential equation $y^{\prime}-y \tan x=2 x \sec x$ and $y(0)$, then

(2012)

(a) $y (\frac{\pi}{4})=\frac{\pi^{2}}{8 \sqrt{2}}$

(b) $y^{\prime} (\frac{\pi}{4})=\frac{\pi^{2}}{18}$

(c) $y (\frac{\pi}{3})=\frac{\pi^{2}}{9}$

(d) $y^{\prime} (\frac{\pi}{3})=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$

Show Answer

Answer:

Correct Answer: 23. (a, d)

Solution:

  1. PLAN: Linear differential equation under one variable.

$ \frac{d y}{d x}+P y=Q ; \quad I F=e^{\int P d x} $

$\therefore \quad \text { Solution is, } y(IF)=\int Q \cdot$(IF) d x+C $

$ y^{\prime}-y \tan x=2 x \sec x \text { and } y(0)=0 $

$\therefore \quad \frac{d y}{d x}-y \tan x=2 x \sec x $

$\therefore \quad IF=\int e^{-\tan x} d x=e^{\log |\cos x|}=\cos x$

Solution is $y \cdot \cos x=\int 2 x \sec x \cdot \cos x d x+C$

$ \Rightarrow \quad y \cdot \cos x=x^{2}+C $

$ \text { As } \quad y(0)=0 \Rightarrow \quad C=0 $

$ \therefore \quad y=x^{2} \sec x $

$ \text { Now, } \quad y (\frac{\pi}{4})=\frac{\pi^{2}}8 \sqrt{2} $

$\Rightarrow \quad y^{\prime} (\frac{\pi}{4})=\frac{\pi}{\sqrt{2}}+\frac{\pi^{2}}{8 \sqrt{2}} $

$y (\frac{\pi}{3})=\frac{2 \pi^{2}}{9} \Rightarrow y^{\prime} (\frac{\pi}{3})=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$



NCERT Chapter Video Solution

Dual Pane